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Abstmct. The paper considers the application of the metric 

ds2=dr2+r2 de2+dz2+2or2 de  dr - (c z -oz r2 )  dr2 

to a rotating system. This metric has been used by other investigators but the interpretation 
of measurements made within the rotating system through the framework oi the mehic has 
never been properly performed. 

The first part of the paper considers the application of radar measurement to the 
rotating system. In the second part infinitesimal radar measurements are used to show 
that for an observer at a radius R within a rotating system, similar results are obtained, 
through the application of the metric, to those which would be obtained by the use of 
instantaneous rest frames. An error in a paper by Grgn i s  pointed out. 

The overall aim of this paper is to clarify the interpretation of measurements made by a 
rotating observer when the metric approach to rotating systems is used. 

The cylindrical polar form of the Minkowski metric in the system s(F, 6 Z, 5)  is 
ds2 = dT2+ 7’ ds2  +d i2  - c2 di2 

and the Galilean rotational transformation is 

r =  7, e = 8- wi, z = 2, t = i .  

From these two equation we can obtain in the system S(r, 6, z, t )  

ds2=dr2+r2d6’+dz2+2w2d6 dt-(c2-wZr2) dt2. (1) 
In this paper an investigation of this metric is presented. The metric describes a 

Particular rotating system obtained by a Galilean rotation of a cylindrical polar 
coordinate system about its own z axis. Hence, this is the space-time of the rotating 
system as seen by an observer situated at the origin of coordinates, 0, and who is 
rotatingwith the system. The Riemann-Christoffel and Ricci tensors obtained from the 
metric coefficients in equation (1) are, of course, equal to zero, and so the metric 
corresponds to a flat space-time. This is an important point for, unlike the metrics 
derived by Kursunoglu (1 95 1) and Mikhail and Abdalla (1 965) the metric corresponds 
to a space-time in which there is zero energy distribution. 

This metric has often been used to describe rotating systems but the correct 
interpretation, through the metric, of observations made by an observer who is rotating 
abut some point, seems to be lacking. It is the intention of this paper to clarify this 
point. 
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2. Measurements in rotating systems: fundamentals 

Let the metric in equation (1) have origin of coordinates at 0. How cm we relate the 
measurements made of some event by an observer at 0 to measurements of the Same 
event made by an observer at 0‘ where 0‘ is situated at r = R, 8 = 0, z = o? 

We cannot use a linear transformation because the units with which an &sener at 
0 makes measurements may be different from those with which an obsemer at 0 
makes measurements. It can easily be shown that the proper clocks at 0 and at 0 mn at 
different rates since from equation (1) we have at O(0, 0, 0, r) 

and at O(R, 0, 0, t )  

ds2 = -c2 dt2 

dS2=-(c2-w2R2) dt2. 

If we take ds2 = -c2 dT2, where T is the proper time of a clock at 0’, we have 

dT=*(l - w ~ R ~ / c ~ ) ~ ’ ~  dt. (2) 
The positive root of this equation is usually considered applicable. 
We do not yet have the transformation involving the spatial coordinates of observers 

at 0 and at 0‘. But if we are to discuss any ‘transformation of coordinates’ we must 
know exactly what the coordinates represent before we can relate any physical meaning 
to the transformation. 

In special relativity the spatial coordinates of a Lorentz frame correspond exactly to 
quantities measured by radar distance, luminosity distance, apparent size and triangula- 
tion measurements. In the system given by equation (1) it is not obvious that these 
various methods of measurement must give the same result. For convenience we 
choose radar distance as the form of measurement to be used in the rotating system 
under investigation. 

To be more specific we define exactly what is meant by radar measurement. We 
assume that an observer, who always measures the ‘two-way’ velocity of light to be 
constant and equal to c, emits a radar signal at T~ on his local (proper) clock. The radar 
signal is reflected from some body and is then received by the observer at TZ.  The radar 
distance of the body from the observer, as measured by the observer, is then defined as 

(3) 1 rd = zc ( 7 2  - 71) 

Note the assumption that the ‘two-way’ velocity of light is constant. The velo~tyof 
Iight in one direction need not necessarily be constant. 

Consider now the direction of the body as seen by the observer. It is quite Possible 
that the emitted and reflected radar rays will be emitted and returned in different 
directions as seen by an observer at 0. As a convention we take the direction of the 
body to be along a line bisecting the angle between the emitted and received radar rays* 
Justification for this is, as will be seen below, that these radar coordinates as defined, 
correspond exactly to the coordinate system S used by an observer at the origin Of the 
coordinates, 0. 

We now need to know the equation describing the paths of light rays in the system ’, 
and these are, of course, the null-geodesics of the metric of equation (1). 

Rewriting equation (1) as 

( d s / d A ) 2 = i 2 + r 2 e 2 + i 2 + 2 0 r 2 e 1 - ( ~ 2 - 0  2 r 2 ) t  ’2- -gW$’ iV (4) 
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where A is a parameter which varies along the curve and f’ = dd‘,/dh, we can find the 
n&geodesic equations from the Euler-Lagrange variational equations; 
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and the additional condition: 

Applying these equations to equation (4) we obtain 

(d/dh)(2i) = 2rb2+4wr4i+202ri2 

(d/dh)(2r2e +20r2t) = 0 

(d/dh)(2i) = 0 

(d/dh)[2wr2d - 2 f ( ~ ~ - r ~ w ~ ) ]  = 0 

and 

i2+ r2b2 + i2  + 2wr2&- ( c 2  - 0 2 r 2 ) i 2  = 0. 

r2b + ur2i= A 

~ r ~ t i - - i ( c ~ - r ~ ~ ~ )  = D 

Integrating equations (8) to (10) produces 

i = B  

from which comes 

dz - Br2c2 
de  Ac2 - Aw2r + Wr2D 

dz  Bc2 
dt  A o - D  

dt r2(Ao - 0) 
de 

-_ 

-=- 

-= 
Ac’ - Aw2r2 + wr2D 

where A, 3 and D are constants of integration. Multiplying through by (1/@ in 
equation (1 1) gives 

2 (e) + r2 + (2) + 2 4  ”) - (2 - 0 2 r 2 )  (C) = 0. 
d e  de  de  dB’ 

Substituting from equations (15) to (17) in this equation and using 3 =0, yields 

dr 
dB 

r [ ( A 2 ~ 2 ~ 2 + D 2 ~ 2 - 2 A w D ~ 2 ) r 2 - A  2 c 4 ] 1/2 -= 
Ac - Au2r2 + wr2D 

If we now let r = a when the ray is at its point of closest approach to the origin, then 
at (dr/d6) = 0 and so from equation (19) we have 

a = *Ac/(Aw - D). 
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Substituting this into equations (15) to (17) and rearranging gives 

w r ,*- de 
dr r(r2-a2)’/ c (r2-a2)1’2 (20) 
-= 

de ac 
-=*+=U 
dt T 

and from these equations we can obtain 

dt * r  
dr c(r2--a ) 2 1/2‘ 
-= 

Integration of equations (20) and (21) produces 

where kl and k2 are constants of integration (k, = 6, k2 = t, at r = a). 
These are the equations for the null-geodesics, the paths of light rays, in the system 

described by the metric of equation (1). 
We now examine the relationship between the radar coordinates and the coordi- 

nates already in use by an observer at 0, which are, of course, r, 6, z and t. The radial 
velocity of rays emitted from 0 and received by 0 will be given by equation (22) with 
a=Oandis 

dr/dt = fc (25) 

So the radar coordinate rd = ;c( r2 - t,) is the same as the radial coordinate already in 

Also from equation (23) with a = 0 we have 
use. 

6 = *(or/c)+ kl f v / 2 .  (26) 

Hence the line bisecting the direction of the emitted and reflected radar rays points 
along the same value of 8 as given by the angular coordinate already used. 

We can now return to the problem of relating measurements by observers at 0 and 
at 0. 

Consider figure 1. An observer at 0 cannot himself make a measurement of the 
distance of P from 0‘. But he can locate the positions of P and 0’, and then the ‘impbed‘ 
distance between the two points is given by the cosine rule, in which case we write 

OP(o, = (R2+r:-2rlR COS (27) 

TO find the radar distance O’P(07 as measured by 0’ it is necessary to find the time Yf 
flight Of a photon from 0’ to P and the time of flight of another photon from P to 0 * 
Converting these times to the times on the proper clock of 0 by means of equation (2), 
a t h g  them together and multiplying by 4 2 ,  we find the radar distance measured by 
0 . For a constant angular velocity there are only two null-geodesics whichjoin 0’ and 
P. One corresponds to the track of a photon from 0’ to P and the other correspond to 
the track of a photon from P to 0.  The two paths may, of course, be different- 
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Paths of light roys 
occording to 0 

Figure 1. Paths of light rays from.0‘ to P and from P to O’, according to the coordinate 
system S, in use by an observer at 0. 

Consider first the emitted ray. Let the ray be at r = a at t = 0, at  0 at t = to and at P 
at t = tl; then from equations (23) and (24) we have, 

0 = *cos-’(a/R)*(o/c)(RZ-a2)1’2+kl 

81 = *tcos-’(a/rl) *(o/c)(~:- a2)”’+ kI 
t1= *(l/c)(r:-a2)’/2 

to= *(l/c>(R2-aZ)’~*. 

It is now necessary to solve equations (28) and (29) for kl and, in particular, a. 
Substitution into (30) and (31) would then yield (tl - to), the time of flight of a photon 
from 0 to P, as calculated by an observer at 0. Up to present it has proved impossible 
to solve equations (28) and (29) for kl and a, although it may be possible to obtain an 
approximate solution by computer. 

The only case so far where it has proved possible to relate integrated radar distance 
measurements of observers at 0 and at 0 is the obvious case of the radar distance 
measurement of 0 from 0 by an observer at 0, and the radar distance measurement of 
0 from 0 by an observer at 0‘. 

The radar distance measurement of 0’ from 0 by an observer at 0, is given by 

rd(0) = R 
and the radar distance measurement of 0 from 0’ by an observer at 0 is 

rd(O’)=&(72-71) 

where T ~ ,  T~ are the times of departure and arrival respectively, of a radar ray reflected 
from 0. 

With these equations and equation (2) we may obtain 

This equation has previously been derived by Jennison (1964). 
Note also that if w is the angular velocity of 0’ about the Z axis of the system S and w’ 

is the angular velocity of the system S about 0’ as measured by an observer at 0’ by the 
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timing of successive transits of some point fixed in the system s, then because ofthe he 
dilatation given by equation (2) we have 

2 2 2 1/2 
(33) o ’ = o / ( ~ - o  R / C  ) . 

This equation, which was also produced by Jennison (1964), has been discussed by 
Davies and Jennison (1975). 

It is possible to find a relationship between infinitesimal radar distance meawe. 
ments of observers at 0 and at 0 which is valid for a vanishingly small region around 0‘. 
Thus we can at least relate the angles of incidence of a light ray as seen by an obsemer at 
0’ to that calculated by an observer at 0. 

3. Elemental radar &stance measurement 

We again use figure 1, however we now let P be at some infinitesimal distance from 0 .  
As before, we allow the observer at 0’ to emit a radar signal which is reflected at P. The 
world lines of 0’, P and the radar rays, relative to an observer at 0, are drawn in figure 2. 
Note that P may have relative motion with respect to an observer at 0’. 

ct 

! P 

Figure 2. The world lines of light rays from 0 to P and from P to 0’. 

The path of the light ray is given by d s  = 0 and so from equation (1) we have 
O = d r 2 + r 2 d 0 2 + d ~ 2 + 2 w 2 d 6  dt-(c2-W2r2)dt2. (34) 

Solving this equation as a quadratic in terms of dt we obtain 
2 1/2 

UT’ dOT[02r4 d02t(c2-W2r2)(dr2+r2 de2+dz >I 
d t=  2 2 2  c - w  r 

(35) 

The two roots correspond, as may be seen from figure 2, to propagation in the 
directions O’P and PO’. Taking the difference of the two roots we find the time for a ray 
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to travel from 0’ to P and back, which is 

(36) 
2[u2r4 de2+(c2- 02r4)(dr2 + rz de2 + d ~ ~ ) ] ’ ’ ~  

c -0 r dtz-dt, = 2 2 2  

The infinitesimal radar distance dcr, measured by an observer at 0‘, we define as 

d o  = i ~ ( d 7 2  - dq) .  (37) 
From this equation and equations (2) and (36) we produce 

dm2 = dr2 + r2de2 ,+dz2 
1 - u2r2/c 

which since 0’ is at (R, 0, 0, t) in the system S ,  may be written 

+dz2. 
R 2  de2 

1 -oZR2/c2 
du2 = dr2+ (39) 

Note that equation (38) gives the radar measure for an elemental area around 0 
actually measured by an observer at 0 but expressed in the coordinates of an observer 
at 0. So in a direction normal to the radius and in the plane of rotation, when an 
observer at 0 measures an elemental distance r dB at observer at 0’ measures an 
elemental distance r de/(l -wzr2/c2)”2. We might also notice the difference in the 
expression for radial distance measurements when dB = dz = 0 in equation (38) which 
gives du  = dry in contrast to the relation between integrated radar distance measure- 
ments as in equation (32). 

It should also be noted that in deriving equation (38) we have assumed for a local 
observer that the ‘two-way’ velocity of light is constant and equal to c. By this we mean 
that any local measurement of the velocity of light over opposite directions by 
experiments such as that by Michelson (1927), must always produce a constant value 
equal to c, for the velocity of Iight. This does not, of course, mean that the velocity of 
light in one direction need necessarily be invariant. However, since all experiments on 
the velocity of light to date have involved two-way measurements, we might consider 
the assumption as discussed above to be a reasonable one since it is in line with the 
principie of special relativity. 

It may be relevant at this point to discuss the one-way velocity of light in the radial 
and the tangential directions as seen by an observer at O’, since in a recent publication 
(Gran 1975) the expressions for the local velocities of light in these directions were, I 
believe, incorrectly given’. 

For a ray travelling radially at 0’ we have from equation (1) 

O=dr2-(C2-u2r2) dt2. (40) 

This equation together with equation (2) gives us 

dr/dr = f c  

and hence in both the positive and negative radial directions the velocity of light at O‘, 
measured by an observer at O’, is constant and equal to c. 

For a ray travelling tangentially at O’, from equation (1) we have 

O=r2d02+2urZ de dt-(c2-u2r2)df2. (42) 
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Solving this as a quadratic for r de/dt we find 

r de/dt = -wr f c. 

Now from equation (38) we have for an observer at 0, for this ray 

d a 2 =  r2 deZ/(1-wZr2/c2). 

Using this equation and equations (2) and (43) we can obtain 

d a  -o r f c  
d r  1-w2r2/c2 
-= 

(43) 

(45) 

for a ray travelling tangentially at 0’. 

claimed, in equations (47) and (50) of his paper, that the local radial velocity of light is 
Equations (41) and (45) are in contrast to those obtained by Gran (1975) who 

cr= (1 -w2r2/c2)1/2c (46) 
and the local tangential velocity of light is 

The mistake in the equations for the velocities presented by Gran is obvious. He 
has, in fact, calculated a coordinate velocity of light in a system using the spatid 
coordinates of an observer at O’, and the temporal coordinate of an observer at 0, 
rather than calculating the local velocity for an observer at 0’. 

We can check that the ‘two-way’ velocity of light is constant and equal to c by the 
following method. We find the element d a  for a ray travelling from 0 to P and the 
element for a ray travelling from P to O‘.and add. If the ‘two-way’ velocity of light is 
constant and equal to c then the addition should produce 2 da. Since the velocity in the 
radial direction has been shown to be i-c it is only necessary to follow this procedure for 
the tangential rays. We let (dg/d/d7.)l,z and dr1,2 be the velocities and times of travel for a 
ray in the two opposite tangential directions respectively, then the total distance 
travelled by the rays, according to an observer at 0’ is 

X= (da/d7)1 dT1 +(dc/dT)* d72. (48) 

Using equations (2), (35) and (45) in this equation produces 

X = 2 d a = 2 r  de/(l-w2r2/c2)’/2 (49) 

as indeed it must, since we have assumed that the ‘two-way’ velocity of light is constant 
in deriving dc. 

Note that it is not possible merely to take the average of the two velocities in 
equation (45) to obtain the one-way velocity of light since the rays travel along different 
paths. 

Let US now once again consider a photon which has travelled from 0 to 0’ but letu 
examine the path of the photon as seen by an observer at 0’, when the photon is very 
near to 0‘. The situation, as seen by an observer at 0, is drawn in figure 3. 

w e  let an angle (6’ be the angle between the path of the light beam, and the direction 
of 0 from 0 ,  as seen by an observer at 0’. 

When the photon is near to 0’ an observer at 0 will measure that the photon is a 
distance dr from 0‘ along a line joining 0 and 0’ and at a distance r dB along aline a‘ 
right angles to this line, in the plane of rotation. However, an observer at 0‘ will 
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Light path 

. 
Fignre 3. The light path near to 0 as seen by an observer at 0 using coordinates of the 
system S. 

measure that the hoton is a distance dr  along the radial line towards 0 and 
r dO/(l- o Z r Z / c Z ) l R  along the line normal to the radius, if the measurements are made 
close enough to 0 for the assumption r =R to be valid. The expressions above are only 
valid for distances measured in an elemental area around 0’. 

Applying these arguments to the equation (20) for the null-geodesics, we find that 
the equation for the null-geodesics near to O’, as seen by an observer at 0, is given by 

or 

dB ’ *(a * ORZ) k:) Rc[(R2 - aZ)(l - 02R2/c2) ] ’~’*  

From the definition of +’ and from figure 3 we have 

tan +’= ( r  deldf)’. 

From this and equation (5 1) we produce 

*(ac*oR2) 
c [ ( R 2 -  a2)(1 -w2R2/c2)]”” tan 4’ = (53) 

For a ray which travels through 0 and hence has a = 0, this equation reduces to 

*twR 
~ ( l  - w ~ R ~ / c ~ ) ~ / ~ ’  tan+ = (54) 

This is precisely the same equation as would be obtained by associating an 
instantaneous Lorentz frame with 0’ and calculating the angle of the incoming ray 
initially emitted by 0. 

We should note that in this analysis equations (50) and (51) are only considered valid 
for any small area close to 0’. However, this is sufficient to calculate the angle of 
incidence at 0 of photons arriving from, and departing to, 0. 

From equation (54) and the restriction 013 the constancy of the local velocity of light 
we may calculate the radial and tangential two-way velocities of light rays at 0’ as 
masured by an observer at 0. These will, of course, agree with the values calculated 
by using the method of instantaneous Lorentz transformations. 
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4. summary 

This paper has considered a method of making measurements within a particular metric 
framework for a rotating system. The relationship between measurements made by 
observers at different points within a rotating system has been investigated. Only the 
relationships between elemental measurements for an area near to a rotating observer 
are so far available, but these relationships have been shown to agree with results which 
would be produced by the application of instantaneous Lorentz frames to rotation. 

The agreement depends on the assumption of a locally constant ‘two-way’ velodity 
of light. It is not necessary to assume that the local velocity of light in one direction is 
constant. 

Many of the problems of rotation in relativity theory are involved with the method 
of making measurements within the rotating system and with the assumptions made in 
deriving results through a particular method of measurement. It is hoped that this 
paper has clarified some of the relationships between observers at different points in a 
rotating system. 
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